3,178 research outputs found

    Can official advice improve mortgage-holders’ perceptions of switching? An experimental investigation. ESRI WP612, February 2019

    Get PDF
    Encouraging consumers to seek out and switch to lower-rate mortgages is important both for the individual consumer’s finances and for functioning competitive markets, but switching rates are low. We conducted an experiment with mortgage-holders to test whether official advice on how to select good mortgage products and how to navigate the switching process alters perceptions of switching. The experiment shows that the advice made consumers more sensitive to interest rate decreases and more favourable towards switching at longer terms. It also increased consumers’ confidence in their ability to select good offers. The findings imply that advice from policymakers can change perceptions and increase switching rates

    Development of a Hydrogeological Model of the Borrowdale Volcanics at Sellafield

    No full text
    International audienceThis work has arisen out of recent developments within the radioactive waste research programme managed by Her Majesty's Inspectorate of Pollution, UK (HMIP)*, to develop an integrated flow and transport model for the potential deep radioactive waste repository at Sellafield. One of the largest sources of uncertainty in model predictions, is the characterisation of the hydrogeological properties of the underlying strata, in particular, of the Borrowdale Volcanic Group (BVG) within which the repository is to be located. Analysis of the available borehole data (that released by the proponent company, Nirex, by December 1995) for the BVG formation has indicated a dual regime consisting of flow within faults and flow within the matrix (or an equivalent porous medium containing micro-fractures). Significant relationships between permeability, depth and the presence and orientation of faults have been identified; they account for a variation of up to 6 orders of magnitude in mean permeability measurements. This can be explained in part by the effect of the orientation of the current maximum principal stress directions within the BVG: however, it is likely that permeability is also dependent on the existence of fracture families, which cannot be effectively identified from the data currently available. These analyses have enabled considerable insight to be gained into the dominant features of flow within the BVG. The conceptual hydrogeological model derived here will have a significant effect on the outcome and reliability of future radionuclide transport predictions in the Sellafield area

    Increasing the quality of seismic interpretation

    Get PDF
    Acknowledgments E. Macrae was funded by an NERC Open CASE Ph.D. award (NE/F013728/1) with Midland Valley Exploration Ltd. as the industry partner. We thank 763 geoscientists for their participation, and in particular, the REs who gave their time freely to the project. M. Scott (University of Glasgow, UK) is thanked for assisting with the statistical analysis. Four reviewers are thanked for their constructive comments that improved the manuscript.Peer reviewedPublisher PD

    Alien Registration- Lunn, Rita J. (Blaine, Aroostook County)

    Get PDF
    https://digitalmaine.com/alien_docs/22684/thumbnail.jp

    Metabolic profiling reveals coordinated switches in primary carbohydrate metabolism in grape berry (Vitis vinifera L.), a non-climacteric fleshy fruit

    Get PDF
    Changes in carbohydrate metabolism during grape berry development play a central role in shaping the final composition of the fruit. The present work aimed to identify metabolic switches during grape development and to provide insights into the timing of developmental regulation of carbohydrate metabolism. Metabolites from central carbon metabolism were measured using high-pressure anion-exchange chromatography coupled to tandem mass spectrometry and enzymatic assays during the development of grape berries from either field-grown vines or fruiting cuttings grown in the greenhouse. Principal component analysis readily discriminated the various stages of berry development, with similar trajectories for field-grown and greenhouse samples. This showed that each stage of fruit development had a characteristic metabolic profile and provided compelling evidence that the fruit-bearing cuttings are a useful model system to investigate regulation of central carbon metabolism in grape berry. The metabolites measured showed tight coordination within their respective pathways, clustering into sugars and sugar-phosphate metabolism, glycolysis, and the tricarboxylic acid cycle. In addition, there was a pronounced shift in metabolism around veraison, characterized by rapidly increasing sugar levels and decreasing organic acids. In contrast, glycolytic intermediates and sugar phosphates declined before veraison but remained fairly stable post-veraison. In summary, these detailed and comprehensive metabolite analyses revealed the timing of important switches in primary carbohydrate metabolism, which could be related to transcriptional and developmental changes within the berry to achieve an integrated understanding of grape berry development. The results are discussed in a meta-analysis comparing metabolic changes in climacteric versus non-climacteric fleshy fruits

    Probabilistic models to describe the dynamics of migrating microbial communities

    Get PDF
    In all but the most sterile environments bacteria will reside in fluid being transported through conduits and some of these will attach and grow as biofilms on the conduit walls. The concentration and diversity of bacteria in the fluid at the point of delivery will be a mix of those when it entered the conduit and those that have become entrained into the flow due to seeding from biofilms. Examples include fluids through conduits such as drinking water pipe networks, endotracheal tubes, catheters and ventilation systems. Here we present two probabilistic models to describe changes in the composition of bulk fluid microbial communities as they are transported through a conduit whilst exposed to biofilm communities. The first (discrete) model simulates absolute numbers of individual cells, whereas the other (continuous) model simulates the relative abundance of taxa in the bulk fluid. The discrete model is founded on a birth-death process whereby the community changes one individual at a time and the numbers of cells in the system can vary. The continuous model is a stochastic differential equation derived from the discrete model and can also accommodate changes in the carrying capacity of the bulk fluid. These models provide a novel Lagrangian framework to investigate and predict the dynamics of migrating microbial communities. In this paper we compare the two models, discuss their merits, possible applications and present simulation results in the context of drinking water distribution systems. Our results provide novel insight into the effects of stochastic dynamics on the composition of non-stationary microbial communities that are exposed to biofilms and provides a new avenue for modelling microbial dynamics in systems where fluids are being transported
    • …
    corecore